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Abstract

The objective of this study is to delineate electro!mechanical coupling in piezoceramic materials[ The
model system investigated is a two!dimensional linear piezoceramic strip polarized in the thickness direction\
and it is subjected to local symmetric pressures on the upper and lower edges\ traction!free boundary
conditions on both end surfaces\ and voltages on portions of the upper and lower edges[ Under a simplifying
assumption of the gradient of the electric potential\ closed form solutions of the elastic _eld have been
obtained[

It is noticed that instead of the nine constants "including the elastic compliance constants\ sij\ the
piezoelectric constants\ dij\ and the dielectric permittivity constants\ oij#\ the elastic and piezoelectric charac!
teristics of the material can be represented by three parameters\ b0\ b1 and b2[ b0 consists of elastic compliance
constants only[ b1 and b2 signify the piezoelectric e}ect[ Furthermore\ higher values of b1 imply a more
pronounced piezoelectric e}ect on the elastic _eld[ The identi_cation of these parameters greatly facilitates
the study of coupling e}ects in piezoelectric ceramics[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Piezoelectricity is the characteristic of certain materials to develop an electric charge when a
mechanical stress is applied "direct e}ect#\ or to develop a deformation when a voltage is applied
"converse e}ect#[ In piezoelectric ceramics\ when an electrical _eld is applied parallel to the
polarization direction\ an expansion in the same direction and shrinkage in the transverse direction
occur[ When an electrical _eld is applied perpendicular to the polarization direction\ shear defor!
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mation occurs "Tiersten\ 0858#[ Signi_cant advances have been made in recent years in the
technologies of piezoelectric materials and their applications\ for example\ in intelligent structures
"Newnham\ 0886#\ various types of metal!ceramic composite actuators "Newnham et al[\ 0881 ^
Dogan and Newnham\ 0883#\ and multi!phase piezoelectric composite transducers "Zhang et al[\
0884#[

Although the theory of linear piezoelectricity is well developed\ analytical solutions of the
coupled electric and elastic _elds are often limited to problems with fairly simple geometry and
boundary conditions[ The analyses and models in the literature pertaining to electro!mechanical
devices are mostly based upon the _nite element method "FEM# "see\ for instance\ Tzou and
Tseng\ 0889 ^ Kagawa et al[\ 0885#[ Although FEM is very useful in the analysis of piezoelectric
devices\ it does not e}ectively delineate the interrelationship among the various piezoelectric and
elastic constants\ namely\ their coupling e}ects[ Overall\ FEM is not highly desirable for parametric
studies[ The purpose of this paper is to pursue an analytical approach for demonstrating the e}ects
of the elastic and piezoelectric characteristics "including the elastic compliance constants\ sij\ the
piezoelectric constants\ dij\ and the dielectric permittivity constants\ oij# on the electric and stress
_elds of a 1!D piezoceramic strip[ Although the boundary value problem examined here is relatively
simple\ the conclusions derived from this exercise are of general applicability[

In this paper\ a closed form solution for a 1!D linear piezoceramic strip under stress and electric
boundary conditions is developed using the Airy stress function and the electric potential function[
The piezoceramic strip polarized in the thickness direction is subjected to local symmetric pressures
on the upper and lower edges\ traction!free boundary conditions on both end surfaces\ as well as
voltages on portions of the upper and lower edges[ First\ it is assumed that the gradient of electric
potential in the strip length!wise direction is much smaller than that in the thickness direction[
Thus\ the governing equations in terms of the Airy stress function and electric potential can be
uncoupled[ Then\ the solutions to the governing equations are sought in the form of Fourier series[
Finally\ the results of electric and stress _elds obtained from the analytical approach are compared
with those obtained from FEM analysis\ and the e}ects of material constants on the electric and
stress _elds are evaluated in terms of three non!dimensional parameters[

1[ Theory

1[0[ Constitutive equations and `overnin` equations of piezoelectricity

The constitutive equations of piezoelectricity can be stated in the following general form ]

"S# � ðsŁ"s#¦ðdŁ"E# "0#

"D# � ðdŁT"s#¦ðoŁ"E# "1#

where "s# � stress tensor in contracted notation\ "S# � strain tensor in contracted notation\
"E# � electric _eld vector\ "D# � electric displacement vector\ ðsŁ � elastic compliance matrix\
ðdŁ � piezoelectric constant matrix\ and ðoŁ � dielectric permittivity matrix[ The equation of motion
and the charge equation of electrostatics are\ respectively

sij\i¦fj � ru� j "2#



X[ Ruan et al[ : International Journal of Solids and Structures 25 "0888# 354Ð376 356

Di\i � 9 "3#

where sij � stress tensor\ fj � body force\ uj � displacement\ Di � electric displacement\ and
r � density[

Consider a 1!D problem in the x0−x2 plane[ If the x2!axis is taken as the polarization direction\
the constitutive equation for a piezoelectric ceramic can be written as ]
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The equation of equilibrium "with zero body force# and the compatibility equation are\ respectively\
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1[1[ Governin` equations in terms of Airy stress function and electric potential

Substituting the constitutive equation ðeqn "4#Ł into the compatibility equation ðeqn "7#Ł\ we get

11
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2
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11
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0
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which is expressed in terms of the stress and electric _elds[ Substituting the constitutive equation
ðeqn "5#Ł into the charge equation ðeqn "3#Ł yields

1

1x0

ðd04s4¦o00E0Ł¦
1

1x2

ðd20s0¦d22s2¦o22E2Ł � 9 "09#

which is also given in terms of the stress and electrical _elds[
The Airy stress function f"x0\ x2# is de_ned such that

s0 �
11f

1x1
2

\ s2 �
11f

1x1
0

\ s4 � −
11f

1x0x2

"00#

The equations of equilibrium ðeqn "6#Ł are then identically satis_ed[ An electric potential\ 8\ is
introduced\ and the electric _eld can be expressed as
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Fig[ 0[ A piezoceramic strip with boundary conditions[
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Finally\ substituting the Airy stress function and electric potential into eqns "8# and "09#\ we
obtain the following governing equations ]
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which involves all nine independent elastic\ piezoelectric and dielectric constants[

1[2[ Governin` equations for a piezoelectric strip

Consider a piezoelectric strip that occupies the region 9 ¾ x0 ¾ l\ −H ¾ x2 ¾ H as shown in
Fig[ 0[ Here H is the half thickness of the strip\ and l is the length of the strip[ The strip is polarized
in the x2!direction[ Symmetric loads are applied on the upper and lower edges of the strip\ and
voltages are also added on the upper and lower edges[ A traction!free boundary condition exists
on both ends of the strip[

We consider the case that the constant voltages are applied on the upper and lower edges\ and
it is reasonable to assume that the x2 component of the electric _eld\ E2\ is much greater than the
x0 component\ E0[ Thus\ "18:1x2# Ł"18:1x0#[ If it is further assumed that 118:1x1

2 is much greater
than 118:11x0\ we can neglect the last term of eqn "02#\ and the _rst term of eqn "03#[ Then\ eqns
"02# and "03# yield
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Taking the partial derivative of x2 to eqn "05# and then substituting it into eqn "04#\ the governing
equation in terms of the stress function only is obtained ]
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1[3[ Non!dimensionalization

In order to reduce the number of independent constants\ the governing partial di}erential
equations ðeqns "05# and "06#Ł are _rst non!dimensionalized[ The dimensionless co!ordinates j and
h are de_ned as

j � 0
s00

s221
0:3 x0

H
\ h �

x2

H

Also\ by de_ning the following non!dimensional constants
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and the dimensional constant

k �
d20
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the governing partial di}erential eqns "06# and "05# become\ respectively\
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where H is the half thickness of the strip[ The governing equations in the above form involve three
non!dimensional constants and one dimensional constant rather than nine material constants[
Furthermore\ eqn "08# pertains to the Airy stress function only\ and it does not involve the electric
potential function[
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1[4[ Fourier series solution

We seek solution of eqn "08# in the form of Fourier series

f"j\ h# � s
�

n�0

sin anjFn"h# "10#

where an � np:L\ and L �"s00:s22#0:3"l:H#\ which represents the transformed strip length[ This form
is so chosen that the normal stress\ s0\ at both ends of the strip vanishes[ Substituting eqn "10#
into eqn "08# gives a fourth!order ordinary di}erential equation in Fn"h# ]

g1F2n"h#−g0a
1
nFýn"h#¦a3

nFn"h# � 9 "n � 0\ 1 [ [ [ �# "11#

Here\ we seek solutions to eqn "11# in the form

Fn"h# � elnh "12#

Substituting eqn "12# into eqn "11#\ the following characteristic equation is obtained ]

g1l
3
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1
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1
n¦a3

n � 9 "13#

where g0 � b0−b2\ g1 � 0−b1[ The roots of eqn "13# are

ln � 2
an

z1g1

zg02zg1
0−3g1 "14#

Considering the case g1
0−3g1 ³ 9\ which is valid for all the piezoceramics studied here\ the four

roots of ln can be denoted as

ln0\ ln1 � pn2iqn\ ln2\ ln3 � −pn2iqn

where i � z−0[
The general solution of eqn "11# is expressed as

Fn"h# � epnh"Cn0 cos qnh¦Cn1 sin qnh#¦e−pnh"Cn2 cos qnh−Cn3 sin qnh# "15#

The constants of integration Cn0\ Cn1\ Cn2 and Cn3 can be determined by the boundary conditions
on the upper and lower edges[ For the case of the symmetric loading in the present problem\ it can
be shown that Cn2 � Cn0\ and Cn3 � Cn1[ Therefore\ we have

Fn"h# �"epnh¦e−pnh#Cn0 cos qnh¦"epnh−e−pnh#Cn1 sin qnh "16#

The stress components are then given by
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where F?n"h# and Fýn"h# are given in the Appendix[
We also seek 8"j\ h# in the form of

8"j\ h# � s
�

n�0

sin anjGn"h# "18#

Substituting eqn "18# into eqn "19# yields

Gýn"h# � −a1
n
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Integrating eqn "29# twice with respect to h\ we obtain

Gn"h# � −a1
n
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b1

kH
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where

In"h# � ÐFn"h# dh

and it is given in the Appendix[ Dn0 and Dn1 are the constants of integration[
Finally\ from eqns "20# and "01#\ the electric _elds are obtained

E0 � −
0
H 0

s00

s221
0:3

s
�

n�0

anGn"h# cos anj

E2 � −
0
H

s
�

n�0

anG?n"h# sin anj "21#

The strain components and electric displacement components can be determined by substituting
eqns "17# and "21# into eqns "4# and "5#[

1[5[ Boundary conditions

The mechanical and electric boundary conditions examined in this paper "Fig[ 0# are stated as
follows ]

on the upper edge "x2 � H#

qu"x0# � 8 q9
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Vu"x0# � 8V0
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"23#

and on the lower edge "x2 � −H#

ql"x0# � qu"x0# "24#

Vl"x0# � 8V9

l
1
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l
1

¦b
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"25#

where qu"x0#\ ql"x0# are applied pressure\ and Vu"x0#\ Vl"x0# are applied voltage[ a and b are the
half lengths over which pressure and voltage are applied\ respectively[

Rewriting the boundary conditions ðeqns "22#Ð"25#Ł in terms of the non!dimensional variables\
we have ]
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and on the lower edge
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where L\ A and B are the transformed quantities given by

L � 0
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H
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Also\ qu"j#\ ql"j#\ Vu"j# and Vl"j# can be expanded in Fouriers series as follows ]

qu"j# � s
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Vu"j# � s
�

n�0

dn sin anj

Vl"j# � s
�

n�0

en sin anj "30#

The coe.cients bn\ dn and en can be determined as

bn �
3q9
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sin 0
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1 1 sin anA

dn �
3V0
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sin 0

np

1 1 sin anB

en �
3V9

np
sin 0

np

1 1 sin anB "31#

For the case of the symmetric loading in the present problem\ the boundary conditions of eqns
"22#Ð"25# are expressed below in terms of the stress components and electric potential ]

s2 � −qu"x0# x2 � ¦H

s4 � 9 x2 � ¦H

8 � Vu"x0# x2 � ¦H

8 � Vl"x0# x2 � −H "32#

Rewriting the above boundary conditions in terms of Fn"h# and Gn"h# using the non!dimensional
variables\ results in

Fn"h# �
bn

rn

h � ¦0

F?n"h# � 9 h � ¦0 "n � 0\ 1\ [ [ [ \ N#

Gn"h# � dn h � 0

Gn"h# � en h � −0 "33#

where

rn �
0

H1 0
s00

s221
0:1

a1
n

Equation "33# stands for 3N equations\ and all the 3N constants can be determined[ The expressions
of Cn0\ Cn1\ Dn0 and Dn1 are given in the Appendix[

Finally\ we re!examine all the boundary conditions of the piezoelectric strip[ On the upper and
lower edges\ the stress and electric boundary conditions are identically satis_ed[ The traction!free
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boundary conditions at both ends of the strip require that s0 � 9\ s4 � 9\ and D0 � 9[ From eqn
"17#\ it can be seen that

s0 � 9\ g
¦H

−H

s4 dx2 � 9 at x0 � 9\ and x0 � l

Also\ by assuming that E0�9 for the present problem\ eqn "5# gives D0 � d04s4\ and it can be
readily shown that

g
H

−H

D0 dx2 � 9 at x0 � 9\ and x0 � l

Thus\ the boundary conditions at both end surfaces of the strip are approximately satis_ed[

2[ Numerical example and results

The numerical example performed for the piezoceramic strip focuses on PZT!4H\ whose material
properties are listed in Table 0[ The geometric parameters are l � 09 mm\ and H � 0 mm[
The mechanical and electric loadings are q9 � 19 N:mm1 "1[4 ¾ x0 ¾ 6[4 mm# and Vu � 0999 V
"9 ¾ x0 ¾ 09 mm# and Vl � 9 "9 ¾ x0 ¾ 09 mm#[

Table 0
Elastic\ piezoelectric and dielectric constants of some selected piezoceramics

Ceramic VIBRIT VIBRIT
PZT!4Ha PZT!4b PZT!3c −Ba 199d 414d

Elastic components "09−01 m1:N#
s00 05[4 05[3 01[3 7[5 00[0 04[6
s01 −3[67 −4[63 −2[87 −1[5 −3[3 −4[8
s02 −7[34 −6[11 −4[41 −1[6
s22 19[6 07[7 05[0 8[0 01[0 08[2
s33 32[4 36[4 28[0 11[1 16[9 35[9

Piezoelectric constant "09−01 C:N#
d20 −163 −061 −024 −47 −79 −089
d22 482 263 299 038 069 319
d04 630 473 414 131 119 514

Relative permittivity "o9 � 7[74×09−01 F:m#
o00:o9 0699 0629 0369 0999 899 1999
o22:o9 0369 0699 0299 809 0929 1999

a Data Sheet "0889# ^ b Rogacheva "0883# ^ c Park and Sun "0884# ^ d Zelenka "0875#[
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Fig[ 1[ Partial summations of Fourier series[

For all the Fourier expressions discussed above\ the _rst 019 terms are used to represent the
in_nite series\ which are adequate for the purpose of convergence[ Figure 1 plots the partial
summations of Fourier series representing distributed pressure on the surface of the piezoceramic
strip in order to examine their convergence[ It can be seen that when the number of terms "N# used
in the series summation is 019\ the discrepancy is less than 1) except for the overshoot at the
discontinuity[ For the purpose of assessing the capability of the present closed form solution\ a
parallel numerical analysis is also conducted using the commercially available FEM code ABAQUS
for linear piezoelectric materials[ We use 273 7!node serendipity elements for one!half of the
piezoceramic strip[

Figures 2Ð4 show the distribution of the stress components\ s0\ s2\ and s4 in one quarter of the
piezoceramic strip using a closed form solution "a#\ and an FEM approach "b#[ The distributions
of electric potential in the piezoelectric strip obtained by the analytical model and the FEM
approach are shown\ respectively\ in Fig[ 5"a# and "b#[

It can be seen from Figs 2Ð5 that the result obtained from the closed form solution are in very
good agreement with those from the FEM approach[ A comparison of the results obtained from
these two approaches shows that the largest di}erence of the stress components\ s0\ s2 and s4

occurs around x0 � 6[4 mm\ the edge of the distributed load[ There is a change of sign of s0 and
s2\ around x0 � 6[4 mm\ and s4 reaches its maximum at this location[ Along the symmetric axis
"x2 � 9#\ the change of stress components\ s0\ s2 and s4\ becomes gradual compared to the stress
components along the edges[ The variation of electric potential\ 8\ is almost linear along the x2

axis[
The electric potential on the upper edge near the end of the strip obtained from the closed form

solution is not very satisfactory\ and there is about 00) overshoot compared with the prescribed
boundary values[ Again\ this is attributed to the Gibbs phenomenon\ associated with the Fourier
series representation of any function with a jump discontinuity "Greenberg\ 0877#[
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Fig[ 2[ Distribution of stress\ s0\ of the piezoceramic strip determined by "a# analytical model and "b# FEM approach[

3[ Parametric study

The analytical model enables the e}ect of piezoceramic material characteristics on the stress and
electric _elds\ and the extent of their coupling\ to be studied[ The governing equation in terms of
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Fig[ 3[ Distribution of stress\ s2\ of the piezoceramic strip determined by "a# analytical model and "b# FEM approach[

the Airy stress function ðeqn "08#Ł contains three non!dimensional material constants\ b0\ b1 and
b2[ If b1 � b2 � 9\ eqn "08# represents the problem in which the coupling between the stress and
electric _elds vanishes[ Furthermore\ when b0 � 1\ eqn "08# is reduced to the familiar biharmonic
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Fig[ 4[ Distribution of stress\ s4\ of the piezoceramic strip determined by "a# analytical model and "b# FEM approach[

equation for isotropic elastic materials[ Therefore\ there is a practical signi_cance to study the
e}ect of the non!dimensional parameters\ b0\ b1 and b2\ on the stress and the electric _elds[

Table 0 lists data of elastic\ piezoelectric and dielectric constants of some selected piezoceramic
materials\ and in Table 1 the corresponding values of non!dimensional constants\ b0\ b1 and b2\
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Fig[ 5[ Distribution of electric potential\ 8\ of the piezoceramic strip determined by "a# the analytical model and "b#
FEM approach[

and dimensional constant\ k\ are presented[ The ranges of b1 and b2 for these piezoceramic materials
are 9[9Ð9[24 and 9[9Ð9[076\ respectively[ In the following\ a parametric study is performed on the
variations of stresses and electric potential for 9 ¾ b1 ¾ 9[5\ b0 � 0[33\ k � −05[50 C:m1 and
b2 � 9[37 = b1[ The values of b0\ k and b2:b1 are based upon PZT!4H[
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Table 1
The parameters of some selected piezoceramics

b0 b1 b2 k "C:m1#

PZT!4H 0[328 9[249 9[058 −05[50
PZT!4 0[772 9[019 9[026 −09[38
PZT!3 0[874 9[017 9[076 −09[80
Ceramic!B 0[778 9[9374 9[9643 −5[63
VIBRIT 199 0[469 9[9521 9[9267 −6[10
VIBRIT 414 0[854 9[029 9[015 −01[09
Isotropic 1[9 9[9 9[9

Variations of the non!dimensional stress components\ s0:q9 and s2:q9\ and electric potential\ 8\
with the non!dimensional coordinate variable\ h\ for several values of b1\ at three sections of the
piezoceramic strip "x0 � 4\ x0 � 6 and x0 � 8 mm# are shown in Figs 6Ð8[ It should be noted that
the range of 9 ¾ b1 ¾ 9[5 and the corresponding values of b2 ensure that g1

0−3g1 ³ 9 in eqn "14#[
Thus\ the general solution of eqn "11# can be expressed by eqn "15#[ For the cases of g1

0−3g1 � 9
and g1

0−3g1 × 9\ a slight change of the solution form of eqn "15# is expected[
The parameter b1 in~uences the magnitude and distribution of the non!dimensional stress

components and the electric potential[ The pro_les for stress components and electric potential
become more uniform when b1 decreases[ Among the three sections\ the maximum di}erence of
the magnitude of stress components and electric potential occurs at the section of x0 � 6 mm\ near
the edge of the distributed load[ The magnitude of the non!dimensional stress component s0:q9 is
about 16) lower at b1 � 9[5 than at b1 � 9 for h � 0 ^ s2:q9 is about 3[7) lower at b1 � 9[5 than
at b1 � 9 for h � 0 ^ the electric potential 8 is about 4) lower at b1 � 9[5 than at b1 � 9 for
h � 9[6[ Also\ s0:q9\ is about 4) lower at b1 � 9[1 than at b1 � 9 for h � 0 ^ s2:q9 is about 1)
lower at b1 � 9[1 than at b1 � 9 for h � 0 ^ 8 is about 1) lower at b1 � 9[5 than at b1 � 9 for
h � 9[6[

4[ Discussion and conclusions

"0# Comparison of the results obtained from the closed form solution with those from the FEM
approach show that the present analytical approach is capable of analyzing 1!D piezoceramic
problems[

"1# For the case that the voltage is added to the upper and lower edges of the strip\ the
assumption that "18:1x2# Ł"18:1x0# is equivalent to the x2!direction electric _eld\ 18:1x2\ induced
by the stress _eld\ is much smaller than that induced by the applied voltage[ A comparison of the
results from the FEM approach with those from the analytical model justi_es this assumption[

"2# Based upon the assumption that the gradient of the electric potential in the x0!direction is
much smaller than that in the x2!direction\ the governing equations in terms of the Airy stress
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Fig[ 6[ Variation of non!dimensional stress component\ s0:q9\ along h!axis for several values of the parameter b1 at "a#
x0 � 4[9 mm\ "b# x0 � 6[9 mm\ and "c# x0 � 8[9 mm[

function and the electric potential function are uncoupled[ Thus\ the Airy stress function can be
solved by using stress boundary conditions only\ and the electric boundary condition does not
in~uence the stress _elds[ The stress _eld is a}ected by the electric _eld through the piezoelectric
and dielectric constants[ However\ for problems with displacement boundary conditions the electric
boundary condition does in~uence the stress _elds[
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Fig[ 6 "continued#

"3# By non!dimensionalization it can be seen from eqns "07#Ð"19# that the Airy stress function
and the electric potential are a}ected by the material parameters\ b0\ b1\ b2 and k\ instead of the
nine piezoceramic constants[ An increase in d20 leads to higher b1\ b2 and k values\ and consequently\
a more pronounced e}ect of piezoelectricity on the stress _elds[

"4# It can be seen from eqn "08# that b0 consists of elastic compliance constants only\ and b1

and b2 are expressed in terms of the elastic\ piezoelectric and dielectric constants[ Therefore\ the
parameters b1 and b2 signify the piezoelectric e}ect on the elastic _eld[ For instance\ b1 � b2 � 9
stands for the case of an elastic medium without any piezoelectric e}ect[ Higher values of b1 imply
a more pronounced piezoelectric e}ect on the elastic _eld[

"5# Parametric study shows that among the three sections\ the largest di}erences in the values
of s0:q9\ s2:q9 and 8 for b1 � 9 and b1 � 9[1 occur at the section x0 � 6 mm\ and the di}erences
are about 4\ 1 and 1)\ respectively[ The values of b1 of the piezoceramics selected in this study
are less than 9[1 except for PZT!4H[ Thus\ for some piezoceramics\ the e}ect of piezoelectricity
on the elastic _eld is negligibly small[

"6# There is no signi_cant in~uence of the parameter b1 on the electric potential _eld[ The
electric potential is almost linear along the h!axis[ An increase in b1 causes a slight perturbation of
the electric potential along the h!axis[ Among the three sections considered\ the biggest perturbation
occurs at the section of x0 � 6[9 mm[

"7# Identi_cation of the parameter\ b0\ b1 and b2\ greatly facilitates the study of coupling e}ects
in piezoelectric ceramics[
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Fig[ 7[ Variation of non!dimensional stress component\ s2:q9\ along h!axis for several values of the parameter b1\ at "a#
x0 � 4[9 mm\ "b# x0 � 6[9 mm\ and "c# x0 � 8[9 mm[
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Fig[ 7 "continued#

Appendix

Fn"h# �"epnh¦e−pnh#Cn0 cos qnh¦"epnh−e−pnh#Cn1 sin qnh "A0#

F?n"h# � pn"epnh−e−pnh#Cn0 cos qnh−qn"epnh¦e−pnh#Cn0 sin qnh "A1#

¦pn"epnh¦e−pnh#Cn1 sin qnh¦qn"epnh−e−pnh#Cn1 sin qnh

Fýn"h# � p1
n "epnh¦e−pnh#Cn0 cos qnh−1pnqn"epnh−e−pnh#Cn0 sin qnh

−q1
n "epnh¦e−pnh#Cn0 cos qnh¦p1

n "epnh−e−pnh#Cn1 sin qnh

¦1pnqn"epnh¦e−pnh#Cn1 cos qnh−q1
n "epnh−e−pnh#Cn1 sin qnh "A2#

In"h# �
Cn0

p1
n¦q1

n

"pn cos qnh¦qn sin qnh#epnh

¦
Cn0

p1
n¦q1

n

"−pn cos qnh¦qn sin qnh#e−pnh

¦
Cn1

p1
n¦q1

n

"−qn cos qnh¦pn sin qnh#epnh

¦
Cn1

p1
n¦q1

n

"qn cos qnh¦pn sin qnh#e−pnh "A3#
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Fig[ 8[ Variation of electric potential\ 8\ along h!axis for several values of the parameter\ b1\ at "a# x0 � 4[9 mm\ "b#
x0 � 6[9 mm\ and "c# x0 � 8[9 mm[
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Fig[ 8 "continued#

Cn0 �
a11

a00a11−a01a10

bn

rn

Cn1 � −
a10

a00a11−a01a10

bn

rn

"A4#

where

a00 � "epn¦e−pn# cos qn\ a01 �"epn−e−pn# sin qn

a10 � pn"epn−e−pn# cos qn−qn"epn¦e−pn# sin qn

a11 � pn"epn¦e−pn# sin qn−qn"epn−e−pn# cos qn

Dn0 �
0
1
"dn−en#−a1

n

b2

kH
In"0#

Dn1 � 0
1
"dn¦en#[ "A5#
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