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Abstract

The objective of this study is to delineate electro-mechanical coupling in piezoceramic materials. The
model system investigated is a two-dimensional linear piezoceramic strip polarized in the thickness direction,
and it is subjected to local symmetric pressures on the upper and lower edges, traction-free boundary
conditions on both end surfaces, and voltages on portions of the upper and lower edges. Under a simplifying
assumption of the gradient of the electric potential, closed form solutions of the elastic field have been
obtained.

It is noticed that instead of the nine constants (including the elastic compliance constants, s;, the
piezoelectric constants, d;;, and the dielectric permittivity constants, ¢,), the elastic and piezoelectric charac-
teristics of the material can be represented by three parameters, f3,, 5, and f;. 8, consists of elastic compliance
constants only. ff, and f; signify the piezoelectric effect. Furthermore, higher values of f, imply a more
pronounced piezoelectric effect on the elastic field. The identification of these parameters greatly facilitates
the study of coupling effects in piezoelectric ceramics. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Piezoelectricity is the characteristic of certain materials to develop an electric charge when a
mechanical stress is applied (direct effect), or to develop a deformation when a voltage is applied
(converse effect). In piezoelectric ceramics, when an electrical field is applied parallel to the
polarization direction, an expansion in the same direction and shrinkage in the transverse direction
occur. When an electrical field is applied perpendicular to the polarization direction, shear defor-
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mation occurs (Tiersten, 1969). Significant advances have been made in recent years in the
technologies of piezoelectric materials and their applications, for example, in intelligent structures
(Newnham, 1997), various types of metal-ceramic composite actuators (Newnham et al., 1992 ;
Dogan and Newnham, 1994), and multi-phase piezoelectric composite transducers (Zhang et al.,
1995).

Although the theory of linear piezoelectricity is well developed, analytical solutions of the
coupled electric and elastic fields are often limited to problems with fairly simple geometry and
boundary conditions. The analyses and models in the literature pertaining to electro-mechanical
devices are mostly based upon the finite element method (FEM) (see, for instance, Tzou and
Tseng, 1990 ; Kagawa et al., 1996). Although FEM is very useful in the analysis of piezoelectric
devices, it does not effectively delineate the interrelationship among the various piezoelectric and
elastic constants, namely, their coupling effects. Overall, FEM is not highly desirable for parametric
studies. The purpose of this paper is to pursue an analytical approach for demonstrating the effects
of the elastic and piezoelectric characteristics (including the elastic compliance constants, s,;, the
piezoelectric constants, d;;, and the dielectric permittivity constants, ¢;) on the electric and stress
fields of a 2-D piezoceramic strip. Although the boundary value problem examined here is relatively
simple, the conclusions derived from this exercise are of general applicability.

In this paper, a closed form solution for a 2-D linear piezoceramic strip under stress and electric
boundary conditions is developed using the Airy stress function and the electric potential function.
The piezoceramic strip polarized in the thickness direction is subjected to local symmetric pressures
on the upper and lower edges, traction-free boundary conditions on both end surfaces, as well as
voltages on portions of the upper and lower edges. First, it is assumed that the gradient of electric
potential in the strip length-wise direction is much smaller than that in the thickness direction.
Thus, the governing equations in terms of the Airy stress function and electric potential can be
uncoupled. Then, the solutions to the governing equations are sought in the form of Fourier series.
Finally, the results of electric and stress fields obtained from the analytical approach are compared
with those obtained from FEM analysis, and the effects of material constants on the electric and
stress fields are evaluated in terms of three non-dimensional parameters.

2. Theory
2.1. Constitutive equations and governing equations of piezoelectricity

The constitutive equations of piezoelectricity can be stated in the following general form :
{S} = [sl{o} +[dI{£} M
{D} = [d]" {o} + [e] { £} 2

where {6} = stress tensor in contracted notation, {S} = strain tensor in contracted notation,
{E} = electric field vector, {D} = electric displacement vector, [s] = elastic compliance matrix,
[d] = piezoelectric constant matrix, and [¢] = dielectric permittivity matrix. The equation of motion
and the charge equation of electrostatics are, respectively

oy +f; = pi (3)
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D; =0 “)

where ¢, = stress tensor, f; = body force, u; = displacement, D, = electric displacement, and
p = density.

Consider a 2-D problem in the x, — x; plane. If the x;-axis is taken as the polarization direction,
the constitutive equation for a piezoelectric ceramic can be written as:

S st s 0 oy 0 dy E
Syp =815 s33 0 [{oy+| 0 ds; {El} ®)
SS O O S551\05 dlS O }
0,
= o3+ (6)
D; dy, dy; 0 o 0 &3] (Es
5

The equation of equilibrium (with zero body force) and the compatibility equation are, respectively,

dov o5 _

ox,  0x;

0os 0o,

ox,  0x; 0 )
0*S,  0*S, _ 0%Ss ®)
0x3 oxi 0x, 0x;

2.2. Governing equations in terms of Airy stress function and electric potential

Substituting the constitutive equation [eqn (5)] into the compatibility equation [eqn (8)], we get

02 0° 0°
@[sllo-l +51305 +ds B3]+ ﬁ[slsal +53305 +dys E5] = m[sssas +d,sE\] )
3 1 1X3

which is expressed in terms of the stress and electric fields. Substituting the constitutive equation
[eqn (6)] into the charge equation [eqn (4)] yields
0 0
E[dISO-S_FSIIEI]_FE[dNUI+d3363+833E3] =0 (10)
1 3

which is also given in terms of the stress and electrical fields.
The Airy stress function f(x,, x5) is defined such that

o o ot

s 3 ] 5
0x3 oxi 0X X3

0,

(In

The equations of equilibrium [eqn (7)] are then identically satisfied. An electric potential, ¢, is
introduced, and the electric field can be expressed as
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Fig. 1. A piezoceramic strip with boundary conditions.
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Finally, substituting the Airy stress function and electric potential into eqns (9) and (10), we
obtain the following governing equations:

E, = (12)

o*f of of (% ¢

— + 255+ —— 8533 —=dy, —— +(dy;—d;s) —— 13
811 8x‘3‘ (2515 SSS)@X%X% §33 8x‘3‘ 31 8x§ (ds; 15) 0x%x3 (13)

82q) (32g0 (33f 83/’
&1 +ey o =dy — +(dsys—dis) —— 14
11 o2 33 8x§ 31 axg (ds5 15)@x%x3 (14)

which involves all nine independent elastic, piezoelectric and dielectric constants.

2.3. Governing equations for a piezoelectric strip

Consider a piezoelectric strip that occupies the region 0 < x; </, — H < x; < H as shown in
Fig. 1. Here H is the half thickness of the strip, and /is the length of the strip. The strip is polarized
in the x;-direction. Symmetric loads are applied on the upper and lower edges of the strip, and
voltages are also added on the upper and lower edges. A traction-free boundary condition exists
on both ends of the strip.

We consider the case that the constant voltages are applied on the upper and lower edges, and
it is reasonable to assume that the x; component of the electric field, E;, is much greater than the
x, component, E,. Thus, (0¢/dx;) > (0¢/0x,). If it is further assumed that 0?¢/dx3 is much greater
than 0%¢p/d°x,, we can neglect the last term of eqn (13), and the first term of eqn (14). Then, eqns
(13) and (14) yield

*f o*f *f o
St 2815 55) s 45y = dyy — 15
11 ox (2513 SS)GX%)C% 338)6‘3‘ 31 ox3 15)
0> >f o
Y- d317(+(d33—d15)ff (16)

€33 =
0x3 ox;3 0X71 x5
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Taking the partial derivative of x; to eqn (16) and then substituting it into eqn (15), the governing
equation in terms of the stress function only is obtained :

84 d 84 2 64
811 f+ (2515 +555) — 3l(d33_d15) / +{ S33— 2 fZO (17)
ox4 €33 2x3

3 8XIX3 €33 5X§

2.4. Non-dimensionalization
In order to reduce the number of independent constants, the governing partial differential

equations [eqns (16) and (17)] are first non-dimensionalized. The dimensionless co-ordinates ¢ and
n are defined as

P T TR
sw) H T H

Also, by defining the following non-dimensional constants

1 1/2
B = ( > (2513 +544)
S11533

2

B, = 31
2

€33511

1 1/2 ds,
ﬂ3 = 7(d33_d15) (18)
S11533 €33

and the dimensional constant

ds,
K= —
S11

the governing partial differential eqns (17) and (16) become, respectively,

G g gy g O _
oet + (1 —Bs) Y +(1—=5,) ot 0 (19)
To _1p0f 15 0f (20)

o Hx o2y Hrx op

where H is the half thickness of the strip. The governing equations in the above form involve three
non-dimensional constants and one dimensional constant rather than nine material constants.
Furthermore, eqn (19) pertains to the Airy stress function only, and it does not involve the electric
potential function.
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2.5. Fourier series solution

We seek solution of eqn (19) in the form of Fourier series
f&n) = ), sine,&F,(n) 1)
n=1

where o, = nn/L, and L = (s,,/s3;)""*(I/H), which represents the transformed strip length. This form
is so chosen that the normal stress, o,, at both ends of the strip vanishes. Substituting eqn (21)
into eqn (19) gives a fourth-order ordinary differential equation in F,(#) :

P2 () =y Fi () o F, () =0 (n=1,2...00) (22)
Here, we seek solutions to eqn (22) in the form

F,(n) = " (23)
Substituting eqn (23) into eqn (22), the following characteristic equation is obtained :

Vadn =710 A+ 05, =0 (24)
where y, = ,— f, 7, = 1 —f,. The roots of eqn (24) are

o

n

}“n = i Y1 i V% _47)2 (25)

2y,

Considering the case 7 —4y, < 0, which is valid for all the piezoceramics studied here, the four
roots of 4, can be denoted as

}“nl’irﬂ =pniiq;7’ i)137/1;14 = _pnilqn

where i =,/ — 1.
The general solution of eqn (22) is expressed as

Ez (17) = e/’n”l (Cnl Cos qnn + Cn2 Sin Qizrl) + e*P,,”](Cn3 COS %7’] - Cn4 Sin anl) (26)

The constants of integration C,;, C,,, C,; and C,, can be determined by the boundary conditions
on the upper and lower edges. For the case of the symmetric loading in the present problem, it can
be shown that C,; = C,;, and C,, = C,,. Therefore, we have

Fn (77) = (epnn + eip”ﬂ)cnl Cos g, + (eﬂ,,f"l - eip"y’)CHZ sin q.1 (27)

The stress components are then given by

1 & . ,
o, = En; sin o, EF, (1)

1 S14 1/2 o 5 .
03 = Z o, Sin O‘néFn(rl)

)
H 833 n=1
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e}

1 /s
Os = T z o, COS O‘niF;(n) (28)

H? \s3; n=1

where F,(n) and F,(n) are given in the Appendix.
We also seek ¢ (&, 1) in the form of

o) = i $in a,EG, (1) (29)

Substituting eqn (29) into eqn (20) yields

> Ps B

Gn(;/l) = —, E[Fn(r,)—}_ KiHF n(;/l) (30)

Integrating eqn (30) twice with respect to 5, we obtain

> Ps p-

Gn(”]) = —u, KiHIn(VI)—FKiHFn(’/])—'_Dnl’/]—'_DnZ (31)

where

L,(n) = [F,(n) dn

and it is given in the Appendix. D,, and D,, are the constants of integration.
Finally, from eqns (31) and (12), the electric fields are obtained

== ()7 S G mcosas
1 — H S33 n:lan n ’7 Ccos o,
1 & .
E3 = - E Z aﬂGlll(’,I) sim ané (32)
n=1

The strain components and electric displacement components can be determined by substituting
eqns (28) and (32) into eqns (5) and (6).

2.6. Boundary conditions

The mechanical and electric boundary conditions examined in this paper (Fig. 1) are stated as
follows :

on the upper edge (x; = H)

/ /
qo s—asXx; <5+a

q.(x1) = 2 (33)

0 elsewhere
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) )
Vi, ——b<x,<=+b
Vi) ={ ' 2 S) (34)

0 elsewhere

and on the lower edge (x; = — H)

q/(x1) = q,(x) (35)

/ /
Vo =—b<x <=+b
Vi) ={ " 2 "STS2 (36)

0 elsewhere

where ¢,(x,), ¢/(x;) are applied pressure, and V,(x,), V,(x,) are applied voltage. ¢ and b are the
half lengths over which pressure and voltage are applied, respectively.

Rewriting the boundary conditions [eqns (33)—(36)] in terms of the non-dimensional variables,
we have:

on the upper edge

£—A<é<£+A
@ =" 277552 37)

0 elsewhere

L L

Vi 5—-B<{<;-B

V(&) = 2 2 (38)
0  elsewhere

and on the lower edge

7(¢) = q.(S) (39)
V. L B<5<£ B

=" 2 "2 (40)

0  elsewhere

where L, A and B are the transformed quantities given by

N 1/4[ N 1/461 S 1/417
L=("") ., 4=("") ., and B=("]
S33 H S33 H 833 H

Also, q,(8), (&), V.(&) and V(&) can be expanded in Fouriers series as follows:

@) = 3 bysino,é

n=1

4,(&) = q.(S)



X. Ruan et al. | International Journal of Solids and Structures 36 (1999) 465-487
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V(@) = ¥ dsing,
V(&) = ,i e, sina,¢& (41)
The coeflicients b,, d, and e, can be determined as

(42)

For the case of the symmetric loading in the present problem, the boundary conditions of eqns
(33)—(36) are expressed below in terms of the stress components and electric potential :

o3 =—q,(x;) x3=+H
65 =0 X3 == +H
p=V,(x) x3=+H

p=V(x) x3=-H (43)
Rewriting the above boundary conditions in terms of F,(1) and G,(1) using the non-dimensional
variables, results in

b,
Em)=—" n=+1

E,) =0 n=+1
G,(n=d, n=1
Gn(’/’) =€, n= —1

where

1 S11 12 P
n =7 T fxn
P H? \533

Equation (44) stands for 4N equations, and all the 4N constants can be determined. The expressions

(n=1,2,...,N)

(44)

of C,,, C,,, D,, and D,, are given in the Appendix.

Finally, we re-examine all the boundary conditions of the piezoelectric strip. On the upper and
lower edges, the stress and electric boundary conditions are identically satisfied. The traction-free
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boundary conditions at both ends of the strip require that o, = 0, 65 = 0, and D, = 0. From eqn
(28), it can be seen that

+H
61 :O, J‘ 0-5 dX3 :0 atxl :O, al’ld xl :l
—H

Also, by assuming that £, =0 for the present problem, eqn (6) gives D, = d,s05, and it can be
readily shown that

H
J‘ Dl d.X'; :0 atxl :0, and xl :I
—H

Thus, the boundary conditions at both end surfaces of the strip are approximately satisfied.

3. Numerical example and results

The numerical example performed for the piezoceramic strip focuses on PZT-5H, whose material
properties are listed in Table 1. The geometric parameters are /= 10 mm, and H =1 mm.
The mechanical and electric loadings are ¢, = 20 N/mm? (2.5 < x;, < 7.5 mm) and V, = 1000 V
O0<x, <10mm)and V,=0 (0 < x; < 10 mm).

Table 1
Elastic, piezoelectric and dielectric constants of some selected piezoceramics

Ceramic VIBRIT VIBRIT
PZT-5H* PZT-5° PZT-4¢ —B? 200¢ 5254

Elastic components (10~'2 m?/N)

Shy 16.5 16.4 12.4 8.6 11.1 15.7

$1p 478 —5.74 ~3.98 —26 44 ~59

S13 —8.45 —7.22 —5.52 —2.7

S33 20.7 18.8 16.1 9.1 12.1 19.3

Sas 43.5 47.5 39.1 22.2 27.0 46.0
Piezoelectric constant (10~'2 C/N)

ds, —274 —172 —135 —58 —80 —190

dss 593 374 300 149 170 420

dys 741 584 525 242 220 625
Relative permittivity (g, = 8.85x 10™'* F/m)

&11/€ 1700 1730 1470 1000 900 2000

€33/ 1470 1700 1300 910 1030 2000

2Data Sheet (1990) ; ®* Rogacheva (1994) ; < Park and Sun (1995) ; ¢ Zelenka (1986).
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Fig. 2. Partial summations of Fourier series.

For all the Fourier expressions discussed above, the first 120 terms are used to represent the
infinite series, which are adequate for the purpose of convergence. Figure 2 plots the partial
summations of Fourier series representing distributed pressure on the surface of the piezoceramic
strip in order to examine their convergence. It can be seen that when the number of terms (N) used
in the series summation is 120, the discrepancy is less than 2% except for the overshoot at the
discontinuity. For the purpose of assessing the capability of the present closed form solution, a
parallel numerical analysis is also conducted using the commercially available FEM code ABAQUS
for linear piezoelectric materials. We use 384 8-node serendipity elements for one-half of the
piezoceramic Strip.

Figures 3-5 show the distribution of the stress components, ¢,, o5, and o5 in one quarter of the
piezoceramic strip using a closed form solution (a), and an FEM approach (b). The distributions
of electric potential in the piezoelectric strip obtained by the analytical model and the FEM
approach are shown, respectively, in Fig. 6(a) and (b).

It can be seen from Figs 3—6 that the result obtained from the closed form solution are in very
good agreement with those from the FEM approach. A comparison of the results obtained from
these two approaches shows that the largest difference of the stress components, ¢, o; and o5
occurs around x; = 7.5 mm, the edge of the distributed load. There is a change of sign of ¢, and
g5, around x, = 7.5 mm, and o reaches its maximum at this location. Along the symmetric axis
(x; = 0), the change of stress components, g,, o5 and g5, becomes gradual compared to the stress
components along the edges. The variation of electric potential, ¢, is almost linear along the x;
axis.

The electric potential on the upper edge near the end of the strip obtained from the closed form
solution is not very satisfactory, and there is about 11% overshoot compared with the prescribed
boundary values. Again, this is attributed to the Gibbs phenomenon, associated with the Fourier
series representation of any function with a jump discontinuity (Greenberg, 1988).
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Fig. 3. Distribution of stress, g,, of the piezoceramic strip determined by (a) analytical model and (b) FEM approach.

4. Parametric study

The analytical model enables the effect of piezoceramic material characteristics on the stress and
electric fields, and the extent of their coupling, to be studied. The governing equation in terms of



X. Ruan et al. | International Journal of Solids and Structures 36 (1999) 465-487 477

—_
<
[a W
=)
o
©
T
5 w
© o
O S : - ‘lQ ~
X1 (mm) > g
(a)
~~
<
[a W}
S
()

o
w
< 5 3 B 3
X1 (mm) > g
(b)

Fig. 4. Distribution of stress, g3, of the piezoceramic strip determined by (a) analytical model and (b) FEM approach.

the Airy stress function [eqn (19)] contains three non-dimensional material constants, f,, 5, and
Bs. If B, = 5 =0, eqn (19) represents the problem in which the coupling between the stress and
electric fields vanishes. Furthermore, when 8, = 2, eqn (19) is reduced to the familiar biharmonic
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Fig. 5. Distribution of stress, g, of the piezoceramic strip determined by (a) analytical model and (b) FEM approach.

equation for isotropic elastic materials. Therefore, there is a practical significance to study the
effect of the non-dimensional parameters, f5,, f, and f;, on the stress and the electric fields.

Table 1 lists data of elastic, piezoelectric and dielectric constants of some selected piezoceramic
materials, and in Table 2 the corresponding values of non-dimensional constants, f5,, §, and S,
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Fig. 6. Distribution of electric potential, ¢, of the piezoceramic strip determined by (a) the analytical model and (b)
FEM approach.

and dimensional constant, k, are presented. The ranges of 5, and f; for these piezoceramic materials
are 0.0-0.35 and 0.0-0.187, respectively. In the following, a parametric study is performed on the
variations of stresses and electric potential for 0 < f, < 0.6, f, = 1.44, k = —16.61 C/m* and
s = 0.48- f,. The values of f3,, k and f;/f, are based upon PZT-5H.
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Table 2
The parameters of some selected piezoceramics

B B> Bs K (C/m?)

PZT-5H 1.439 0.350 0.169 —16.61
PZT-5 1.883 0.120 0.137 —10.49
PZT-4 1.985 0.128 0.187 —10.91
Ceramic-B 1.889 0.0485 0.0754 —6.74
VIBRIT 200 1.570 0.0632 0.0378 —-7.21
VIBRIT 525 1.965 0.130 0.126 —12.10
Isotropic 2.0 0.0 0.0

Variations of the non-dimensional stress components, g,/¢g, and o5/q,, and electric potential, ¢,
with the non-dimensional coordinate variable, 5, for several values of f5,, at three sections of the
piezoceramic strip (x; = 5, x, = 7 and x, = 9 mm) are shown in Figs 7-9. It should be noted that
the range of 0 < f8, < 0.6 and the corresponding values of 8 ensure that y7 —4y, < 0 in eqn (25).
Thus, the general solution of eqn (22) can be expressed by eqn (26). For the cases of y; —4y, =0
and 77 —4y, > 0, a slight change of the solution form of eqn (26) is expected.

The parameter f, influences the magnitude and distribution of the non-dimensional stress
components and the electric potential. The profiles for stress components and electric potential
become more uniform when [, decreases. Among the three sections, the maximum difference of
the magnitude of stress components and electric potential occurs at the section of x;, = 7 mm, near
the edge of the distributed load. The magnitude of the non-dimensional stress component a,/q, is
about 27% lower at f, = 0.6 than at 5, = 0 for 5 = 1; a5/q, is about 4.8% lower at 5, = 0.6 than
at f, =0 for n = 1; the electric potential ¢ is about 5% lower at f, = 0.6 than at 5, =0 for
n =0.7. Also, a,/q,, is about 5% lower at $, = 0.2 than at §, =0 for n = 1; g;/q, is about 2%
lower at f, = 0.2 than at f, =0 for 5 = 1; ¢ is about 2% lower at f, = 0.6 than at ff, = 0 for
n=20.7.

5. Discussion and conclusions

(1) Comparison of the results obtained from the closed form solution with those from the FEM
approach show that the present analytical approach is capable of analyzing 2-D piezoceramic
problems.

(2) For the case that the voltage is added to the upper and lower edges of the strip, the
assumption that (0¢/0x;) > (0@/0x,) is equivalent to the x;-direction electric field, d¢/0x;, induced
by the stress field, is much smaller than that induced by the applied voltage. A comparison of the
results from the FEM approach with those from the analytical model justifies this assumption.

(3) Based upon the assumption that the gradient of the electric potential in the x,-direction is
much smaller than that in the x;-direction, the governing equations in terms of the Airy stress
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0.20 . | |

(b)
Fig. 7. Variation of non-dimensional stress component, 7,/q,, along n-axis for several values of the parameter f3, at (a)
x; = 5.0 mm, (b) x;, = 7.0 mm, and (¢) x; = 9.0 mm.

function and the electric potential function are uncoupled. Thus, the Airy stress function can be
solved by using stress boundary conditions only, and the electric boundary condition does not
influence the stress fields. The stress field is affected by the electric field through the piezoelectric
and dielectric constants. However, for problems with displacement boundary conditions the electric
boundary condition does influence the stress fields.
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0.20

Fig. 7 (continued)

(4) By non-dimensionalization it can be seen from eqns (18)—(20) that the Airy stress function
and the electric potential are affected by the material parameters, f;, f,, f; and k, instead of the
nine piezoceramic constants. An increase in ds, leads to higher f,, 5 and x values, and consequently,
a more pronounced effect of piezoelectricity on the stress fields.

(5) It can be seen from eqn (19) that 5, consists of elastic compliance constants only, and f3,
and f; are expressed in terms of the elastic, piezoelectric and dielectric constants. Therefore, the
parameters f, and f; signify the piezoelectric effect on the elastic field. For instance, ff, = f; =0
stands for the case of an elastic medium without any piezoelectric effect. Higher values of 5, imply
a more pronounced piezoelectric effect on the elastic field.

(6) Parametric study shows that among the three sections, the largest differences in the values
of 6,/q,, 05/9, and ¢ for f, = 0 and f, = 0.2 occur at the section x, = 7 mm, and the differences
are about 5, 2 and 2%, respectively. The values of f3, of the piezoceramics selected in this study
are less than 0.2 except for PZT-5H. Thus, for some piezoceramics, the effect of piezoelectricity
on the elastic field is negligibly small.

(7) There is no significant influence of the parameter 5, on the electric potential field. The
electric potential is almost linear along the #-axis. An increase in [, causes a slight perturbation of
the electric potential along the n-axis. Among the three sections considered, the biggest perturbation
occurs at the section of x; = 7.0 mm.

(8) Identification of the parameter, f,, f, and f;, greatly facilitates the study of coupling effects
in piezoelectric ceramics.
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Fig. 9. Variation of electric potential, ¢, along n-axis for several values of the parameter, f3,, at (a) x, = 5.0 mm, (b)
x; = 7.0 mm, and (¢) x; = 9.0 mm.
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